

Hennock Community Primary School Science Curriculum

Our Curriculum statements are designed to be used as a supportive tool to plan teaching and learning across our school. The key skills are derived from the National Curriculum and spilt into individual year groups to support a progressive approach and mixed age classes.

We believe that Science permeates every aspect of our lives, from the technology we use on a daily basis to the natural world around us that sustains life on earth. Igniting children's curiosity and passion to question and deepen their knowledge and understanding is central to our role as Science leaders. We believe that through Science, we can support the development of problem solving, critical thinking, evaluating and communicating that can be applied to the everyday challenges they face. We believe that igniting a passion in Science will give children the tools they need to discuss and debate global issues that will impact their lives and prepare them for a changing future.

We believe that our lessons should be rooted in exploration and development of ideas from one lesson to the next, so they can build on their previous learning creating a solid foundation of knowledge. We believe practical experiences should be meaningful and rigorous and lead children to question what they have done and where they should go next. We believe that Science should be inclusive and create experiences where everyone can take part.

Vocabulary

Children's command of vocabulary is fundamental to learning and progress across the curriculum. Vocabulary is developed actively, building systematically on pupil's current knowledge and deepening their understanding

of etymology and morphology (word origins and structures) to increase their store of words. Simultaneously, pupils make links between known and new vocabulary, and discuss and apply shades of meaning. In this way, children expand the vocabulary choices that are available to them. It is essential to introduce technical vocabulary which define each curriculum subject. Vocabulary development is underpinned by an oracy culture and a tiered approach. High value is placed on the conscious, purposeful selection of well-chosen vocabulary and appropriate sentence structure to enrich access to learning and feed into written work across the curriculum.

Plants (Y1)	Anima Is inc	Everyday Materials	Season al	Living Thing	Plant s	Animals inc Humans (Y2)	Uses of Everyday	Rocks Rock, stone,
Leaf,	Huma	(Y1)	Chang	s and	(Y2)	Offspring,	Materials (Y2)	pebble,
flower,	ns	Object,	e (Y1)	their	As for	reproduction,	As for Year 1	boulder,
blosso	(Y1)	material,	Weathe	habita	Year	growth, child,	plus	grain,
m,	Head,	wood,	r	ts (Y2)	1	young/old	opaque,	crystals,
petal,	body,	plastic,	(sunny,	Living,	plus	stages	transparent	layers, hard,
fruit,	eyes,	glass, metal,	rainy,	dead,	light,	(examples -	and	soft, texture,
berry,	ears,	water, rock,	windy,	never	shad	chick/hen,	translucent,	absorb
root,	mouth,	brick, paper,	snowy	been	e,	baby/child/adult,	reflective, non-	water, soil,
seed,	teeth,	fabric,	etc.)	alive,	sun,	caterpillar/butter	reflective,	fossil,
trunk,	leg,	elastic, foil,	Season	suited,	warm	fly), exercise,	flexible, rigid	marble,
branch	tail,	card/cardbo	S	suitabl	,	heartbeat,	Shape,	chalk,
, stem,	wing,	ard, rubber,	(winter,	e,	cool,	breathing,	push/pushing,	granite,
bark,	claw,	wool, clay,	summer	basic	water	hygiene, germs,	pull/pulling,	sandstone,
stalk,	fin,	hard, soft,	, spring,	needs,	,	disease, food	twist/twisting,	slate, soil,
bud	scales,	stretchy,	autumn	food,	grow,	types	squash/squash	peat,
	feather	stiff, bendy,)	food	healt	(examples –	ing,	sandy/chalk
	s, fur,	floppy,	Sun,	chain,	hy	meat, fish,	bend/bending,	clay soil
	beak,	waterproof,	sunrise,	shelter		vegetables,	stretch/stretchi	
	paws,	absorbent,	sunset,	,		bread, rice,	ng	
	hooves	breaks/tears	day	move,		pasta)		
		, rough,	length	feed				
		smooth,						
		shiny, dull,						

	see-through, not see- through						
Lower KS2 Sci	ence Vocabulary Li	st					
Plants (Y3)	Animals inc	Light (Y3)	Forces and	Living	Animals inc	States of Matter	Sound
Photosynthes is, pollen, insect/wind	Humans (Y3) Nutrition, nutrients,	Light, light source, dark,	Magnets (Y3)	Things and their habitats	Humans (Y4)	(Y4) Solid,	(Y4) Sound, source,
pollination,	carbohydrates,	absence	Force,	(Y4)	Digestive	liquid, gas,	vibrate,
seed formation,	sugars, protein, vitamins, minerals,	of light, transpare	push, pull,	Classificatio	system, digestion,	state change,	vibratio n,
seed	fibre, fat, water,	nt,	twist,	classificatio	mouth,	melting,	travel,
dispersal	skeleton, bones,	translucen	contact	n keys,	teeth,	freezing,	pitch
(wind dispersal,	muscles, joints, support, protect,	t, opaque, shiny,	force, non-	environmen t, habitat,	saliva, oesophagu	melting point,	(high, low),
animal	move, skull, ribs,	matt,	contact	human	S,	boiling	volume,
dispersal,	spine	surface,	force,	impact,	stomach,	point,	faint,
water		shadow,	magnetic	positive,	small	evaporatio	loud,
dispersal		reflect, mirror,	force,	negative,	intestine, nutrients,	n, tomporatur	insulatio
		sunlight,	magnet, strength,	migrate, hibernate	large	temperatur e, water	n
		dangerou	bar		intestine,	cycle	
		S	magnet,		rectum,		

	ring magnet, button magnet, horsesho e magnet, attract, repel, magnetic material, metal, iron, steel, poles, north pole, south pole	anus, teeth, incisor, canine, molar, premolars, herbivore, carnivore, producer, producer, predator, prey, food chain	
Electricity (Y4) Electricity, electrical appliance/device, mains, plug, electrical circuit, complete circuit,			

		ocodile						
	buzzer, m	, switch,						
	conducto	•						
	insulator,	,						
		al, symbol						
Living /	Animals	Properties	Earth	Forces	Living	Animals	Evolution	Light
•	including	and Changes	and	(Y5)	Things	inc	and	(Y6)
	Humans	of Materials	Space	Force,	and their	Humans	Inheritanc	Light,
•	(Y5)	(Y5)	(Year	gravity,	habitats	(Y6)	e (Y6)	light
· - /	Human	Thermal/electr	,	Earth, air	(Y6)	Heart,	Offspring,	source,
	developm	ical	Earth,	resistanc	Vertebrat	pulse,	sexual	dark, absence
	ent, baby,	insulator/cond	Sun,	e, water	es, fish,	rate,	reproductio	
	toddler,	uctor, change	Moon,	resistanc	amphibia	pumps,	n, vary,	of light,
•	child	at state		a friction	Inc	blood	charactoric	transnar
sperm, c	child,	of state,	(Mercu	e, friction,	NS, rentiles	blood, blood	characteris	transpar ent
sperm, c fertilises, t	child, teenage, adult,	of state, mixture, dissolve,	(Mercu ry, Jupiter,	mechanis	ns, reptiles, birds,	blood, blood vessels,	characteris tics, suited, adapted,	transpar ent, transluc

metamorph osis, asexual, plantlets, runners, bulbs, cuttings	gestation, length, mass, grow, grows, growing	soluble, insoluble, filter, sieve, reversible/non -reversible change, burning, rusting, new material	Venus, Mars, Uranus , Neptun e), spheric al, solar system , rotates , star, orbit, planets	machines , levers, pulleys, gears	, invertebra tes, insects, spiders, snails, worms, flowering, non- flowering	ed, lungs, oxygen, carbon dioxide, nutrients , water, muscles, cycle, circulato ry system, diet, exercise, drugs, lifestyle	nt, inherited, species, fossils	opaque, shiny, matt, surface, shadow, reflect, mirror, sunlight, dangero us straight lines, light ray
Electricity (Y6) Circuit, complete circuit, circuit diagram, circuit symbol, cell, battery,								

bulb,				
buzzer,				
motor,				
switch,				
buzzer, motor, switch, voltage				

As a small school, with classes in curriculum phases, our curriculum is delivered as a two-year rolling programme. Teachers deliver the program of study to afford the greatest opportunity for cross curricular links, although many of the Science units stand alone to avoid tenuous links.

Our rolling program groups units that deal with similar concepts together to enable complete coverage of all curriculum objectives over 2 years.

they are given the opportunity to explore new ideas as well as test them. Curiosity is celebrated within the classroom and when we assess their prior knowledge we also seek to record their questions and ideas for investigations.

We seek opportunities to develop 'Science Capital' with Science visits and visitors as well as valuing the experiences and expertise they bring to the lesson. Along with participating in an annual Science week, where children work across phases to upskill our more mature members of the school as well as allowing our younger pupils to explore other aspects of Science.

We use Outdoor Learning, the school grounds and local area to support the delivery of topics across each year, where appropriate.

We teach Science with inclusion in mind, using technology to support children who find sharing their ideas through writing a barrier to their communication. The use of video recording plays an important part in giving all children a voice and allowing them to contribute on an equal footing.

Purely practical based sessions can be recorded using technology, which captures children's observations, discussions and completion of scientific investigations.

The profile of Science is kept high throughout the school with a whole school science board show casing each class's work.

The National Curriculum					
Key stage 1 programme of study - years 1 and 2	Lower key stage 2 programme of study	Upper key stage 2 programme of study			
Working scientifically					
 During years 1 and 2, pupils should be taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content: asking simple questions and recognising that they can be answered in different ways observing closely, using simple equipment performing simple tests identifying and classifying using their observations and ideas to suggest answers to questions gathering and recording data to help in 	 Working scientifically During years 3 and 4, pupils should be taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content: asking relevant questions and using different types of scientific enquiries to 	Working scientifically During years 5 and 6, pupils should be taught to use the following practical scientific methods, processes and skills through the teaching of the programme of study content: • planning different types of scientific enquiries to answer			
answering questions Notes and guidance (non-statutory) Pupils in years 1 and 2 should explore the world around them and raise their own questions. They should experience different types of scientific enquiries, including practical activities, and begin to recognise ways in which they might answer scientific questions. They should use simple features to compare	 answer them setting up simple practical enquiries, comparative and fair tests making systematic and careful observations and, where appropriate, taking accurate 	 questions, including recognising and controlling variables where necessary taking measurements, using a range of scientific equipment, with increasing accuracy and 			
objects, materials and living things and, with help,	measurements using	precision, taking			

decide how to sort and group them, observe changes over time, and, with guidance, they should begin to notice patterns and relationships.

They should ask people questions and use simple secondary sources to find answers.

They should use simple measurements and equipment (for example, hand lenses, egg timers) to gather data, carry out simple tests, record simple data, and talk about what they have found out and how they found it out. With help, they should record and communicate their findings in a range of ways and begin to use simple scientific language.

These opportunities for working scientifically should be provided across years 1 and 2 so that the expectations in the programme of study can be met by the end of year 2. Pupils are not expected to cover each aspect for every area of study.

Year 1 programme of study Plants

Pupils should be taught to:

 identify and name a variety of common wild and garden plants, including deciduous and evergreen trees standard units, using a range of equipment, including thermometers and data loggers

- gathering, recording, classifying and presenting data in a variety of ways to help in answering questions
- recording findings using simple scientific language, drawings, labelled diagrams, keys, bar charts, and tables
- reporting on findings from enquiries, including oral and written explanations, displays or presentations of results and conclusions
- using results to draw simple conclusions,

repeat readings when appropriate

- recording data and results of increasing complexity using scientific diagrams and labels, classification keys, tables, scatter graphs, bar and line graphs
- using test results to make predictions to set up further comparative and fair tests
- reporting and presenting findings from enquiries, including conclusions, causal relationships and explanations of and a degree of trust in results, in oral and written forms such

 identify and describe the basic structure of a variety of common flowering plants, including trees

Notes and guidance (non-statutory)

Pupils should use the local environment throughout the year to explore and answer questions about plants growing in their habitat. Where possible, they should observe the growth of flowers and vegetables that they have planted.

They should become familiar with common names of flowers, examples of deciduous and evergreen trees, and plant structures (including leaves, flowers (blossom), petals, fruit, roots, bulb, seed, trunk, branches, stem). Pupils might work scientifically by: observing closely, perhaps using magnifying glasses, and comparing and contrasting familiar plants; describing how they were able to identify and group them, and drawing diagrams showing the parts of different plants including trees. Pupils might keep records of how plants have changed over time, for example, the leaves falling off trees and buds opening; and compare and contrast what they have found out about different plants.

Animals, including humans

Pupils should be taught to:

make predictions for new values, suggest improvements and raise further questions

- identifying differences, similarities or changes related to simple scientific ideas and processes
- using straightforward scientific evidence to answer questions or to support their findings.

Notes and guidance (nonstatutory)

Pupils in years 3 and 4 should be given a range of scientific experiences to enable them to raise their own questions about the world around them. They should start to make their own decisions about the most appropriate type of scientific enquiry they might use to answer questions; recognise when a simple fair as displays and other presentations

identifying scientific evidence that has been used to support or refute ideas or arguments Notes and guidance (non-statutory) Pupils in years 5 and 6 should use their science experiences to: explore ideas and raise different kinds of questions; select and plan the most appropriate type of scientific enquiry to use to answer scientific questions; recognise when and how to set up comparative and fair tests and explain which variables need to be controlled and why. They should use and develop keys and other information records to

- identify and name a variety of common animals including fish, amphibians, reptiles, birds and mammals
- identify and name a variety of common animals that are carnivores, herbivores and omnivores
- describe and compare the structure of a variety of common animals (fish, amphibians, reptiles, birds and mammals including pets)
- identify, name, draw and label the basic parts of the human body and say which part of the body is associated with each sense

Notes and guidance (non-statutory)

Pupils should use the local environment throughout the year to explore and answer questions about animals in their habitat. They should understand how to take care of animals taken from their local environment and the need to return them safely after study. Pupils should become familiar with the common names of some fish, amphibians, reptiles, birds and mammals, including those that are kept as pets.

Pupils should have plenty of opportunities to learn the names of the main body parts (including head, neck, arms, elbows, legs, knees, face, ears, eyes, test is necessary and help to decide how to set it up; talk about criteria for grouping, sorting and classifying; and use simple keys. They should begin to look for naturally occurring patterns and relationships and decide what data to collect to identify them. They should help to make decisions about what observations to make, how long to make them for and the type of simple equipment that might be used. They should learn how to use new equipment, such as data loggers, appropriately. They should collect data from their own observations and measurements, using notes, simple tables and standard units, and help to make decisions about how to record and analyse this

identify, classify and describe living things and materials, and identify patterns that might be found in the natural environment.

They should make their own decisions about what observations to make. what measurements to use and how long to make them for, and whether to repeat them; choose the most appropriate equipment to make measurements and explain how to use it accurately. They should decide how to record data from a choice of familiar approaches; look for different causal relationships in their data and identify evidence that refutes or supports their ideas. They should use

hair, mouth, teeth) through games, actions, songs and rhymes.

Pupils might work scientifically by: using their observations to compare and contrast animals at first hand or through videos and photographs, describing how they identify and group them; grouping animals according to what they eat; and using their senses to compare different textures, sounds and smells.

Everyday materials

Pupils should be taught to:

- distinguish between an object and the material from which it is made
- identify and name a variety of everyday materials, including wood, plastic, glass, metal, water, and rock
- describe the simple physical properties of a variety of everyday materials
- compare and group together a variety of everyday materials on the basis of their simple physical properties

Notes and guidance (non-statutory)

Pupils should explore, name, discuss and raise and answer questions about everyday materials so that they become familiar with the names of materials and properties such as: hard/soft; stretchy/stiff;

data.

With help, pupils should look for changes, patterns, similarities and differences in their data in order to draw simple conclusions and answer questions. With support, they should identify new questions arising from the data, making predictions for new values within or beyond the data they have collected, and finding ways of improving what they have already done. They should also recognise when and how secondary sources might help them to answer questions that cannot be answered through practical investigations.

Pupils should use relevant scientific language to discuss their ideas and communicate their findings their results to identify when further tests and observations might be needed; recognise which secondary sources will be most useful to research their ideas and begin to separate opinion from fact.

They should use relevant scientific language and illustrations to discuss, communicate and justify their scientific ideas and should talk about how scientific ideas have developed over time.

These opportunities for working scientifically should be provided across years 5 and 6 so that the expectations in the programme of study can be met by the end of year 6. Pupils are not shiny/dull; rough/smooth; bendy/not bendy; waterproof/not waterproof; absorbent/not absorbent; opaque/transparent. Pupils should explore and experiment with a wide variety of materials, not only those listed in the programme of study, but including for example: brick, paper, fabrics, elastic, foil.

Pupils might work scientifically by: performing simple tests to explore questions, for example: 'What is the best material for an umbrella? ... for lining a dog basket? ... for curtains? ... for a bookshelf? ... for a gymnast's leotard?'

Seasonal changes

Pupils should be taught to:

- observe changes across the 4 seasons
- observe and describe weather associated with the seasons and how day length varies

Notes and guidance (non-statutory)

Pupils should observe and talk about changes in the weather and the seasons.

Note: pupils should be warned that it is not safe to look directly at the sun, even when wearing dark glasses.

Pupils might work scientifically by: making tables and charts about the weather; and making displays in ways that are appropriate for different audiences.

These opportunities for working scientifically should be provided across years 3 and 4 so that the expectations in the programme of study can be met by the end of year 4. Pupils are not expected to cover each aspect for every area of study.

Year 3 programme of study

Plants

Pupils should be taught to:

- identify and describe the functions of different parts of flowering plants: roots, stem/trunk, leaves and flowers
- explore the requirements of plants

expected to cover each aspect for every area of study.

Year 5 programme of study

Living things and their habitats

Pupils should be taught to:

- describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird
- describe the life process of reproduction in some plants and animals

Notes and guidance (non-statutory)

Pupils should study and raise questions about their local environment of what happens in the world around them, including day length, as the seasons change.

Year 2 programme of study Living things and their habitats

Pupils should be taught to:

- explore and compare the differences between things that are living, dead, and things that have never been alive
- identify that most living things live in habitats to which they are suited and describe how different habitats provide for the basic needs of different kinds of animals and plants, and how they depend on each other
- identify and name a variety of plants and animals in their habitats, including microhabitats
- describe how animals obtain their food from plants and other animals, using the idea of a simple food chain, and identify and name different sources of food

Notes and guidance (non-statutory)

Pupils should be introduced to the idea that all living things have certain characteristics that are essential for keeping them alive and healthy. They should raise and answer questions that help them to become familiar with the life processes that are for life and growth (air, light, water, nutrients from soil, and room to grow) and how they vary from plant to plant

- investigate the way in which water is transported within plants
- explore the part that flowers play in the life cycle of flowering plants, including pollination, seed formation and seed dispersal

Notes and guidance (nonstatutory)

Pupils should be introduced to the relationship between structure and function: the idea that every part has a job to do. They should explore questions that focus on the role of the roots and stem in nutrition and throughout the year. They should observe life-cycle changes in a variety of living things, for example, plants in the vegetable garden or flower border, and animals in the local environment. They should find out about the work of naturalists and animal behaviourists, for example, David Attenborough and Jane Goodall.

Pupils should find out about different types of reproduction, including sexual and asexual reproduction in plants, and sexual reproduction in animals.

Pupils might work scientifically by: observing and comparing the life cycles of plants and common to all living things. Pupils should be introduced to the terms 'habitat' (a natural environment or home of a variety of plants and animals) and 'microhabitat' (a very small habitat, for example for woodlice under stones, logs or leaf litter). They should raise and answer questions about the local environment that help them to identify and study a variety of plants and animals within their habitat and observe how living things depend on each other, for example, plants serving as a source of food and shelter for animals. Pupils should compare animals in familiar habitats with animals found in less familiar habitats, for example, on the seashore, in woodland, in the ocean, in the rainforest.

Pupils might work scientifically by: sorting and classifying things according to whether they are living, dead or were never alive, and recording their findings using charts. They should describe how they decided where to place things, exploring questions like: 'Is a flame alive? Is a deciduous tree dead in winter?' and talk about ways of answering their questions. They could construct a simple food chain that includes humans (eg, grass, cow, human). They could describe the conditions in different habitats and microhabitats (under log, on

support, leaves for nutrition and flowers for reproduction.

Note: pupils can be introduced to the idea that plants can make their own food, but at this stage they do not need to understand how this happens.

Pupils might work scientifically by: comparing the effect of different factors on plant growth, for example, the amount of light, the amount of fertiliser; discovering how seeds are formed by observing the different stages of plant life cycles over a period of time; looking for patterns in the structure of fruits that relate to how the seeds are dispersed. They might observe how water is transported in plants, for example, by putting cut,

animals in their local environment with other plants and animals around the world (in the rainforest, in the oceans, in desert areas and in prehistoric times), asking pertinent questions and suggesting reasons for similarities and differences. They might try to grow new plants from different parts of the parent plant, for example, seeds, stem and root cuttings, tubers, bulbs. They might observe changes in an animal over a period of time (for example, by hatching and rearing chicks), comparing how different animals reproduce and grow.

Animals, including humans

stony path, under bushes); and find out how the conditions affect the number and type(s) of plants and animals that live there.

Plants

Pupils should be taught to:

- observe and describe how seeds and bulbs grow into mature plants
- find out and describe how plants need water, light and a suitable temperature to grow and stay healthy

Notes and guidance (non-statutory)

Pupils should use the local environment throughout the year to observe how plants grow. Pupils should be introduced to the requirements of plants for germination, growth and survival, as well as the processes of reproduction and growth in plants.

Note: seeds and bulbs need water to grow but most do not need light; seeds and bulbs have a store of food inside them.

Pupils might work scientifically by: observing and recording, with some accuracy, the growth of a variety of plants as they change over time from a seed or bulb, or observing similar plants at different stages of growth; setting up a comparative test to white carnations into coloured water and observing how water travels up the stem to the flowers. Animals, including humans

Pupils should be taught to:

- identify that animals, including humans, need the right types and amount of nutrition, and that they cannot make their own food; they get nutrition from what they eat
- identify that humans and some other animals have skeletons and muscles for support, protection and movement
 Notes and guidance (nonstatutory)
 Pupils should continue to loarn about the importance

learn about the importance of nutrition and should be introduced to the main body

Pupils should be taught to:

 describe the changes as humans develop to old age
 Notes and guidance (non-statutory)
 Pupils should draw a timeline to indicate stages in the growth and development of humans.
 They should learn about the changes experienced in puberty.

Pupils could work scientifically by researching the gestation periods of other animals and comparing them with humans; by finding out and recording the length and mass of a baby as it grows.

Properties and changes of materials

show that plants need light and water to stay healthy.

Animals, including humans

Pupils should be taught to:

- notice that animals, including humans, have offspring which grow into adults
- find out about and describe the basic needs of animals, including humans, for survival (water, food and air)
- describe the importance for humans of exercise, eating the right amounts of different types of food, and hygiene

Notes and guidance (non-statutory)

Pupils should be introduced to the basic needs of animals for survival, as well as the importance of exercise and nutrition for humans. They should also be introduced to the processes of reproduction and growth in animals. The focus at this stage should be on questions that help pupils to recognise growth; they should not be expected to understand how reproduction occurs.

The following examples might be used: egg, chick, chicken; egg, caterpillar, pupa, butterfly; spawn, tadpole, frog; lamb, sheep. Growing into adults can include reference to baby, toddler, child, teenager,

parts associated with the skeleton and muscles, finding out how different parts of the body have special functions.

Pupils might work scientifically by: identifying and grouping animals with and without skeletons and observing and comparing their movement; exploring ideas about what would happen if humans did not have skeletons. They might compare and contrast the diets of different animals (including their pets) and decide ways of grouping them according to what they eat. They might research different food groups and how they keep us healthy, and design meals based on what they find out.

Rocks

Pupils should be taught to:

- compare and group together everyday materials on the basis of their properties, including their hardness, solubility, transparency, conductivity (electrical and thermal), and response to magnets
- know that some materials will dissolve in liquid to form a solution, and describe how to recover a substance from a solution
- use knowledge of solids, liquids and gases to decide how mixtures might be separated,

adult.

Pupils might work scientifically by: observing, through video or first-hand observation and measurement, how different animals, including humans, grow; asking questions about what things animals need for survival and what humans need to stay healthy; and suggesting ways to find answers to their questions.

Uses of everyday materials

Pupils should be taught to:

- identify and compare the suitability of a variety of everyday materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses
- find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching

Notes and guidance (non-statutory)

Pupils should identify and discuss the uses of different everyday materials so that they become familiar with how some materials are used for more than one thing (metal can be used for coins, cans, cars and table legs; wood can be used for matches, floors, and telegraph poles) or different materials are used for the same thing (spoons can be made Pupils should be taught to:

- compare and group together different kinds of rocks on the basis of their appearance and simple physical properties
- describe in simple terms how fossils are formed when things that have lived are trapped within rock
- recognise that soils are made from rocks and organic matter
- Notes and guidance (nonstatutory)

Linked with work in geography, pupils should explore different kinds of rocks and soils, including those in the local environment.

Pupils might work scientifically by: observing

including through filtering, sieving and evaporating

- give reasons, based on evidence from comparative and fair tests, for the particular uses of everyday materials, including metals, wood and plastic
- demonstrate that dissolving, mixing and changes of state are reversible changes
- explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda

from plastic, wood, metal, but not normally from glass). They should think about the properties of materials that make them suitable or unsuitable for particular purposes and they should be encouraged to think about unusual and creative uses for everyday materials. Pupils might find out about people who have developed useful new materials, for example John Dunlop, Charles Macintosh or John McAdam.

Pupils might work scientifically by: comparing the uses of everyday materials in and around the school with materials found in other places (at home, the journey to school, on visits, and in stories, rhymes and songs); observing closely, identifying and classifying the uses of different materials, and recording their observations.

rocks, including those used in buildings and gravestones, and exploring how and why they might have changed over time; using a hand lens or microscope to help them to identify and classify rocks according to whether they have grains or crystals, and whether they have fossils in them. Pupils might research and discuss the different kinds of living things whose fossils are found in sedimentary rock and explore how fossils are formed. Pupils could explore different soils and identify similarities and differences between them and investigate what happens when rocks are rubbed together or what changes occur when they are in water. They can raise and

Notes and guidance (non-statutory) Pupils should build a more systematic understanding of materials by exploring and comparing the

properties of a broad range of materials. including relating these to what they learnt about magnetism in year 3 and about electricity in year 4. They should explore reversible changes, including evaporating, filtering, sieving, melting and dissolving, recognising that melting and dissolving are different processes. Pupils should explore changes that are difficult to reverse, for example, burning, rusting and other reactions, for example, vinegar with bicarbonate

	 answer questions about the way soils are formed. Light Pupils should be taught to: recognise that they need light in order to see things and that dark is the absence of light notice that light is reflected from surfaces recognise that light from the sun can be dangerous and that there are ways to protect their eyes recognise that shadows are formed when the light from a light source is blocked by an opaque object find patterns in the way that the size of shadows change 	of soda. They should find out about how chemists create new materials, for example, Spencer Silver, who invented the glue for sticky notes or Ruth Benerito, who invented wrinkle-free cotton. Note: pupils are not required to make quantitative measurements about conductivity and insulation at this stage. It is sufficient for them to observe that some conductors will produce a brighter bulb in a circuit than others and that some materials will feel hotter than others when a heat source is placed against them. Safety guidelines should be followed when burning materials.
--	--	--

Notes and guidance (non-	Pupils might work
statutory)	scientifically by: carrying
Pupils should explore what	out tests to answer
happens when light reflects	questions, for example,
off a mirror or other	'Which materials would be
reflective surfaces, including	the most effective for
playing mirror games to help	making a warm jacket, for
them to answer questions	wrapping ice cream to
about how light behaves.	stop it melting, or for
They should think about why	making blackout
it is important to protect their	curtains?' They might
eyes from bright lights. They	compare materials in
should look for, and	order to make a switch in
measure, shadows, and find	a circuit. They could
out how they are formed	observe and compare the
and what might cause the	changes that take place,
shadows to change.	for example, when
	burning different materials
Note: pupils should be	or baking bread or cakes.
warned that it is not safe to	They might research and
look directly at the sun, even	discuss how chemical
when wearing dark glasses.	changes have an impact
	on our lives, for example,
Pupils might work	cooking, and discuss the
scientifically by: looking for	creative use of new
patterns in what happens to	materials such as
shadows when the light	

source moves or the	polymers, super-sticky
distance between the light	and super-thin materials.
source and the object	
changes.	Earth and space
-	Pupils should be taught
Forces and magnets	to:
 compare how things move on different surfaces notice that some forces need contact between 2 objects, but magnetic forces can act at a distance observe how magnets attract or repel each other and attract some materials and not others compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic 	 describe the movement of the Earth and other planets relative to the sun in the solar system describe the movement of the moon relative to the Earth describe the sun, Earth and moon as approximately spherical bodies use the idea of the Earth's rotation to explain day and night and the apparent movement of the sun across
materials	the sky

 describe magnets as 	Notes and guidance
having 2 poles	(non-statutory)
 predict whether 2 	Pupils should be
magnets will attract or	introduced to a model of
repel each other,	the sun and Earth that
depending on which	enables them to explain
poles are facing	day and night. Pupils
Notes and guidance (non-	should learn that the sun
statutory)	is a star at the centre of
Pupils should observe that	our solar system and that
magnetic forces can act	it has 8 planets: Mercury,
without direct contact, unlike	Venus, Earth, Mars,
most forces, where direct	Jupiter, Saturn, Uranus
contact is necessary (for	and Neptune (Pluto was
example, opening a door,	reclassified as a 'dwarf
pushing a swing). They	planet' in 2006). They
should explore the	should understand that a
behaviour and everyday	moon is a celestial body
uses of different magnets	that orbits a planet (Earth
(for example, bar, ring,	has 1 moon; Jupiter has 4
button and horseshoe).	large moons and
	numerous smaller ones).
Pupils might work	
scientifically by: comparing	Note: pupils should be
how different things move	warned that it is not safe
and grouping them; raising	to look directly at the sun,
questions and carrying out	even when wearing dark
queetione and earlying out	eten mon mouning durk

Living things and their	start and end of the
habitats	school day; finding out
Pupils should be taught to:	why some people think
 recognise that living 	that structures such as
things can be grouped	Stonehenge might have
in a variety of ways	been used as
 explore and use 	astronomical clocks.
classification keys to	
help group, identify	Forces
and name a variety of	Pupils should be taught
living things in their	to:
local and wider	 explain that
environment	unsupported objects
 recognise that 	fall towards the
environments can	Earth because of
change and that this	the force of gravity
can sometimes pose	acting between the
dangers to living	Earth and the falling
things	object
Notes and guidance (non-	 identify the effects
statutory)	of air resistance,
Pupils should use the local	water resistance
environment throughout the	and friction, that act
year to raise and answer	between moving
questions that help them to	surfaces
identify and study plants and	 recognise that some
animals in their habitat.	mechanisms

They should identify how the	including levers,
habitat changes throughout	pulleys and gears
the year. Pupils should	allow a smaller
explore possible ways of	force to have a
grouping a wide selection of	greater effect
living things that include	Notes and guidance
animals, flowering plants	(non-statutory)
and non-flowering plants.	Pupils should explore
Pupils could begin to put	falling objects and raise
vertebrate animals into	questions about the
groups, for example: fish,	effects of air resistance.
amphibians, reptiles, birds,	They should explore the
and mammals; and	effects of air resistance by
invertebrates into snails and	observing how different
slugs, worms, spiders, and	objects such as
insects.	parachutes and sycamore
	seeds fall. They should
Note: plants can be grouped	experience forces that
into categories such as	make things begin to
flowering plants (including	move, get faster or slow
grasses) and non-flowering	down. Pupils should
plants, for example ferns	explore the effects of
and mosses.	friction on movement and
	find out how it slows or
Pupils should explore	stops moving objects, for
examples of human impact	example, by observing
(both positive and negative)	the effects of a brake on a

on environments, for	bicycle wheel. Pupils
example, the positive effects	should explore the effects
of nature reserves,	of levers, pulleys and
ecologically planned parks,	simple machines on
or garden ponds, and the	movement.
negative effects of	
population and	Pupils might find out how
development, litter or	scientists, for example,
deforestation.	Galileo Galilei and Isaac
	Newton helped to develop
Pupils might work	the theory of gravitation.
scientifically by: using and	Pupils might work
making simple guides or	scientifically by: exploring
keys to explore and identify	falling paper cones or
local plants and animals;	cupcake cases, and
making a guide to local	designing and making a
living things; raising and	variety of parachutes and
answering questions based	carrying out fair tests to
on their observations of	determine which designs
animals and what they have	are the most effective.
found out about other	They might explore
animals that they have	resistance in water by
researched.	making and testing boats
	of different shapes. They
Animals, including	might design and make
humans	products that use levers,
Pupils should be taught to:	pulleys, gears and/or

 describe the simple functions of the basic parts of the digestive system in humans identify the different types of teeth in humans and their construct and interpret a variety of food chains, identifying producers, predators and prey Notes and guidance (non- statutory) Pupils should be introduced to the main body parts associated with the digestive system, for example: mouth, tongue, teeth, oesophagus, stomach, and small and large intestine, and explore their epictors describe the simple functions. Year 6 programme of study Ving things and their habitats Year 6 programme of study Vear 6 programe of study Vear 6 programme of study Vear

Pupils might workPupscientifically by: comparingtheirthe teeth of carnivores andgrownherbivores and suggestingyeareasons for differences;classfinding out what damagesmodeteeth and how to look afterbe ifthem. They might draw andthatdiscuss their ideas about thesuchdigestive system andplancompare them with modelssuchor images.direct

States of matter

Pupils should be taught to:

- compare and group materials together, according to whether they are solids, liquids or gases
- observe that some materials change state when they are heated or cooled, and measure or research the temperature at

Pupils should build on their learning about grouping living things in year 4 by looking at the classification system in more detail. They should be introduced to the idea that broad groupings, such as micro-organisms. plants and animals can be subdivided. Through direct observations where possible, they should classify animals into commonly found invertebrates (such as insects, spiders, snails, worms) and vertebrates (fish, amphibians, reptiles, birds and mammals). They should discuss reasons why living things are placed in one group and not another. Pupils might find out about the significance of the work of scientists such as Carl

which this happens in degrees Celsius (°C)	Linnaeus, a pioneer of classification.
 identify the part played by evaporation and condensation in the 	Pupils might work scientifically by: using
water cycle and associate the rate of evaporation with	classification systems and keys to identify some animals and plants in the
temperature Notes and guidance (non-	immediate environment. They could research
statutory)	unfamiliar animals and
Pupils should explore a	plants from a broad range
variety of everyday	of other habitats and
materials and develop	decide where they belong
simple descriptions of the	in the classification
states of matter (solids hold	system.
their shape; liquids form a	- ,
pool not a pile; gases	Animals including
escape from an unsealed	humans
container). Pupils should	Pupils should be taught
observe water as a solid, a	to:
liquid and a gas and should	 identify and name
note the changes to water	the main parts of
when it is heated or cooled.	the human
	circulatory system,
Note: teachers should avoid	and describe the
using materials where	functions of the

heating is associated with	heart, blood vessels
chemical change, for	and blood
example, through baking or	 recognise the
burning.	impact of diet,
-	exercise, drugs and
Pupils might work	lifestyle on the way
scientifically by: grouping	their bodies function
and classifying a variety of	 describe the ways in
different materials; exploring	which nutrients and
the effect of temperature on	water are
substances such as	transported within
chocolate, butter, cream (for	animals, including
example, to make food such	humans
as chocolate crispy cakes	Notes and guidance
and ice-cream for a party).	(non-statutory)
1 27	
They could research the	Pupils should build on
temperature at which	their learning from years 3 and 4 about the main
materials change state, for	
example, when iron melts or	body parts and internal
when oxygen condenses	organs (skeletal,
into a liquid. They might	muscular and digestive
observe and record	system) to explore and
evaporation over a period of	answer questions that
time, for example, a puddle	help them to understand
in the playground or	how the circulatory
washing on a line, and	system enables the body
investigate the effect of	to function.

temperature on washing	
drying or snowmen melting.	Pupils should learn how
	to keep their bodies
Sound	healthy and how their
Pupils should be taught to:	bodies might be damaged
 identify how sounds 	 including how some
	J. J
are made, associating	drugs and other
some of them with	substances can be
something vibrating	harmful to the human
 recognise that 	body.
vibrations from sounds	·
travel through a	Pupils might work
medium to the ear	scientifically by: exploring
 find patterns between 	the work of scientists and
the pitch of a sound	scientific research about
and features of the	the relationship between
object that produced it	diet, exercise, drugs,
 find patterns between 	lifestyle and health.
the volume of a sound	
and the strength of the	Evolution and
vibrations that	inheritance
produced it	Pupils should be taught
 recognise that sounds 	to:
get fainter as the	 recognise that living
distance from the	things have
sound source	changed over time
increases	and that fossils

Notes and guidance (nonstatutory)

Pupils should explore and identify the way sound is made through vibration in a range of different musical instruments from around the world; and find out how the pitch and volume of sounds can be changed in a variety of ways.

Pupils might work scientifically by: finding patterns in the sounds that are made by different objects such as saucepan lids of different sizes or elastic bands of different thicknesses. They might make earmuffs from a variety of different materials to investigate which provides the best insulation against sound. They could make and play their own instruments by using what provide information about living things that inhabited the Earth millions of years ago

- recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents
- identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution
 Notes and guidance (non-statutory)
 Building on what they

learned about fossils in the topic on rocks in year 3, pupils should find out more about how living

they have found out about	things on earth have
pitch and volume.	changed over time. They
piten and volume.	should be introduced to
Flootricity	the idea that
Electricity	
Pupils should be taught to:	characteristics are passed
 identify common 	from parents to their
appliances that run on	offspring, for instance by
electricity	considering different
 construct a simple 	breeds of dogs, and what
series electrical circuit,	happens when, for
identifying and naming	example, labradors are
its basic parts,	crossed with poodles.
including cells, wires,	They should also
bulbs, switches and	appreciate that variation
buzzers	in offspring over time can
 identify whether or not 	make animals more or
a lamp will light in a	less able to survive in
simple series circuit,	particular environments,
based on whether or	for example, by exploring
not the lamp is part of	how giraffes' necks got
a complete loop with a	longer, or the
battery	development of insulating
 recognise that a 	fur on the arctic fox.
switch opens and	Pupils might find out
closes a circuit and	about the work of
associate this with	palaeontologists such as
whether or not a lamp	Mary Anning and about
lights in a simple	how Charles Darwin and
------------------------------------	------------------------------
series circuit	Alfred Wallace developed
 recognise some 	their ideas on evolution.
common conductors	
and insulators, and	Note: at this stage, pupils
associate metals with	are not expected to
being good	understand how genes
conductors	and chromosomes work.
Notes and guidance (non-	
statutory)	Pupils might work
Pupils should construct	scientifically by: observing
simple series circuits, trying	and raising questions
different components, for	about local animals and
example, bulbs, buzzers	how they are adapted to
and motors, and including	their environment;
switches, and use their	comparing how some
circuits to create simple	living things are adapted
devices. Pupils should draw	to survive in extreme
the circuit as a pictorial	conditions, for example,
representation, not	cactuses, penguins and
necessarily using	camels. They might
conventional circuit symbols	analyse the advantages
at this stage; these will be	and disadvantages of
introduced in year 6.	specific adaptations, such
	as being on 2 feet rather
Note: pupils might use the	than 4, having a long or a
terms current and voltage,	short beak, having gills or
ternis current and voltage,	Short beak, having glils of

but these should not be introduced or defined formally at this stage. Pupils should be taught about precautions for working safely with electricity.	lungs, tendrils on climbing plants, brightly coloured and scented flowers. Light Pupils should be taught
Pupils might work scientifically by: observing patterns, for example, that bulbs get brighter if more cells are added, that metals tend to be conductors of electricity, and that some materials can and some cannot be used to connect across a gap in a circuit.	 recognise that light appears to travel in straight lines use the idea that light travels in straight lines to explain that objects are seen because they give out or reflect light into the eye explain that we see things because light travels from light sources to our eyes or from light sources to objects and then to our eyes use the idea that light travels in

straight lines to explain why shadows have the same shape as the objects that cast them Notes and guidance (non-statutory) Pupils should build on the work on light in year 3, exploring the way that light behaves, including light sources, reflection and shadows. They should talk about what happens and make predictions.
Pupils might work scientifically by: deciding where to place rear-view mirrors on cars; designing and making a periscope and using the idea that light appears to travel in straight lines to explain how it works. They might

investigate the
relationship between light
sources, objects and
shadows by using
shadow puppets. They
could extend their
experience of light by
looking a range of
phenomena including
rainbows, colours on soap
bubbles, objects looking
bent in water, and
coloured filters (they do
not need to explain why
these phenomena occur).
Electricity
Pupils should be taught
to:
associate the
brightness of a lamp
or the volume of a
buzzer with the
number and voltage
of cells used in the
circuit

	 compare and give reasons for variations in how components function, including the brightness of bulbs, the loudness of buzzers and the on/off position of switches use recognised symbols when representing a simple circuit in a
	diagram Notes and guidance
	(non-statutory)
	Building on their work in
	year 4, pupils should
	construct simple series
	circuits, to help them to
	answer questions about
	what happens when they try different components,
	for example, switches,
	bulbs, buzzers and
	motors. They should learn

how to represent a simple circuit in a diagram using recognised symbols.

Note: pupils are expected to learn only about series circuits, not parallel circuits. Pupils should be taught to take the necessary precautions for working safely with electricity.

Pupils might work scientifically by: systematically identifying the effect of changing one component at a time in a circuit; designing and making a set of traffic lights, a burglar alarm or some other useful circuit.

Curriculum Overview at Hennock

At Hennock we use Cornerstones Education's subject scheme to deliver the science curriculum. Science programmes of study in the national curriculum are assigned to year groups. However, this is not compulsory and they must be covered before the end of the phase. We have organised the scheme so that science projects are delivered in a two-year rolling programme in termly or half-termly blocks across the year. Physics is not formally introduced until Key Stage 2. However, in Key Stage 1, children have opportunities to explore natural phenomena, such as shadows.

In the Cornerstones Curriculum, the names of the science projects are matched to the national curriculum aspects, for example, Living things and their habitats and Earth and space and in Key Stage 1, the aspect of Animals, including humans has been separated so that children study humans before expanding to explore animals.

The science projects are sequenced to develop both children's substantive and declarative knowledge, and if possible, make meaningful links to other projects. For example, in Lower KS2, the projects Plant Nutrition and Reproduction is taught alongside the design and technology project Greenhouse and the art and design project Beautiful Botanicals. These links allow children to embed their substantive knowledge in new and often real-life contexts.

The sequencing of projects ensures that children have the substantive knowledge and vocabulary to comprehend subsequent projects fully. Each project's place in the year has also been carefully considered. For example, projects that involve growing plants or observing animals are positioned at a suitable time of year to give children the best possible opportunity to make first-hand observations. Within all the science projects, disciplinary knowledge is embedded within substantive content.

Links with EYFS

The science curriculum begins as soon as the children start school in the EYFS. Learning in science links to the EYFS Statutory Educational Programme: Understanding the world. The activities and enhanced provision in our early years curriculum guide children to make sense of their physical world. They build essential knowledge and understanding that they will apply in science in KS1. Throughout their time in the EYFS explore and understand seasonal changes in the natural world around them.

Key Stage 1

In Cycle A children begin the autumn term with the project Human Survival, learning about the survival needs of humans, before expanding to study animals within their habitats in the project Habitats.

In the spring term, children learn about Seasonal Changes, they learn broadly about seasonal changes linked to weather, living things and day length. The Plant Survival project also explores survival, with children observing what plants need to grow and stay healthy.

Finally, in the summer term, the project Animal Survival, revisits learning from the autumn term, thinking about what animals need to survive.

In Cycle B children start the autumn term with Everyday Materials, linking this learning to the design and technology project Shade and Shelter. In the Human Senses project, they learn about parts of the human body and those associated with the senses.

In the spring term, children develop their understanding of materials in the project Uses of Materials and begin to understand changes in materials through simple physical manipulation, such as bending and twisting. In the summer term, they explore seasonal changes in the project Plant Parts. They finish with the project Animal Parts, linking back to their knowledge about body parts and senses and identifying commonalities.

Lower Key Stage 2

In Cycle A, children start their scientific learning with the project Light and Shadows, where they are explicitly introduced to the subject of light, with children learning about shadows and reflections, revisiting language

from Key Stage 1, including opaque and transparent. The second autumn term project, Sound, introduces the concept of sound, with children identifying how sounds are made and travel. They learn and use new vocabulary, such as pitch and volume, and identify properties of materials associated with these concepts. In the spring term, children study electricity by creating and recording simple circuits in the project Electrical Circuits and Conductors. They build on their knowledge of the properties of materials, identifying electrical conductors and insulators.

Children begin to link structure to function in the summer Plant Nutrition and Reproduction project, identifying the plant parts associated with reproduction and water transport. Up to this point, children have had many opportunities for grouping and sorting living things.

In the project Grouping and Classifying, children recognise this as 'classification' and explore classification keys.

In Cycle B, having learned about human body parts, the senses and survival in Key Stage 1, children now focus on specific body systems and nutrition in Key Stage 2. In the autumn term, they learn about the skeletal and muscular systems in the project Animal Nutrition and the Skeletal System. This learning again links to other animals, with children identifying similarities and differences. Children also learn about healthy diets alongside the autumn term design and technology project Cook Well, Eatwell.

In the spring term, children link their scientific learning to the geography project Rocks, Relics and Rumbles to learn about rocks and soil. In the project Forces and Magnets, children identify magnetic materials and learn about the non-contact force of magnetism. They also begin to learn about contact forces, investigating how things move over surfaces.

In the summer term, children continue their learning about the human body as they learn about the digestive system, again making comparisons to other animals, in the project Digestive System. They finish their learning with the project States of Matter. Children learn about solids, liquids and gases and their characteristics. They understand how temperature drives the change of state.

Upper Key Stage 2

In Cycle A, children learn about the circulatory system and its roles in transporting water, nutrients and gases in the autumn term project Circulatory System. They also learn about how to keep their bodies healthy. In the spring term, children learn about living things and their habitats and link this learning to the geography project Frozen Kingdoms.

In the summer term, children broaden their knowledge of forces, including gravity and air and water resistance, in the project Forces and Mechanisms. They revisit learning from design and technology projects, including Making It Move and Moving Mechanisms, to explore various mechanisms and their uses. Their knowledge of gravity supports the autumn term project Earth and Space, so they can understand the forces that shape planets and our solar system. They also develop their understanding of day and night, first explored in the KS1 project Seasonal Changes.

In Cycle B, children use the project Properties and Changes of Materials to revisit much of their prior learning about materials' properties and learn new properties, including thermal conductivity and solubility. To this point, children have learned much about reversible changes, such as melting and freezing, but now extend their learning to irreversible changes, including chemical changes.

Having learned that animals and plants produce offspring in earlier projects, children now focus on the human life cycle and sexual reproduction in the spring term project Human Reproduction and Ageing. In the summer project Light Theory, children recognise that light travels in straight lines from a source or reflector to the eye and explain the shape of shadows. Finally, in the project Evolution and Inheritance, children learn about inheritance and understand why offspring are not identical to their parents. They also learn about natural selection and how this can lead to the evolution of a species.

Inclusive Approaches adopted at Hennock

At Hennock, we work to ensure that all children receive a broad and balanced curriculum where children can access the knowledge and skills with support in place to ensure that no child is left behind.

We accomplish this through the use of Ordinarily Available Inclusive Provision approaches.

These may include, but is not exhaustive, examples of the following:

Cloze paragraphs, widgets for technical vocabulary, adapted outcomes, recording pupil knowledge and understanding through scribing, video recordings of pupils investigation, laptops for extended pieces of writing, widgets and vocabulary on display, pastel coloured slides, neutral backgrounds on displays and scaffolded independent tasks

In order to assess impact - a guide

At the beginning of each unit an assessment children complete an elicitation task in the form of an 'Enquiry question', with a focus on the application of key subject specific vocabulary that will be taught during that unit.

At the end of the unit knowledge and understanding is measured through the use of an end of unit assessment and by answering the unit enquiry question with children completing the same task to measure progression based on the use of the key subject specific vocabulary.

At the end of every lesson, teachers will complete Knowledge ROCKS (Retrieval of Core Knowledge) where they ask children questions on identified knowledge from previous unites to ensure that children's learning and understanding is fully secure.

The class teacher will review the end of unit assessments and children have the opportunity to respond to misconceptions the following lesson.

During each teaching unit, teachers use AFL to pick up on misconceptions that occur during the lesson. These are often addressed in the moment and explored through oracy or through the schools feedback policy, which is addressed at the start of the next lesson. Teachers also assess children's Working Scientifically skills during the lesson and look for areas that require further development. A final judgement for Working Scientifically is

only made at the end of the Key Stage phase when children have had the opportunity to explore all aspects of the investigation cycle and had the opportunity to make these skills more substantive.

The progress of children with SEND who find writing and communication a barrier to completing a written assessment can be assessed using scribing, which is repeated at the end of unit. From this, the teacher is able to make a judgement of progress achieved from the beginning to the end of the unit.

At the end of every lesson, teachers complete a coverage assessment for key skills taught in that lesson to monitor that children are being taught key skills regularly throughout the year these can be adjusted for pupils who haven't fully secured the skill taught.

There is an expectation that work in Science books will be the same quality as that in English books with regard to presentation.

We measure the impact of Science through the following methods:

Elicitation and End of Unit Enquiry Question# End of Unit Assessment Marking written work Moderation of children's learning in staff meetings, allowing opportunities for dialogue between staff members. Annual reporting to parents on their child's progress Learning walks Moderation of children's learning across our Academy Interviewing the children about their learning (Pupil Voice) Lesson observations Book Scrutiny Ensuring knowledge and progression of skills is being taught.